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Flight simulators are valuable tools for human factors research. However, some simulation platforms fail to 

record all of the information relevant to the researcher. While the data produced by most simulators includes 

details about the position and state of the simulated aircraft, some platforms do not record pilots’ control 

input. Missing control input data make it difficult to evaluate response times, a key behavioral measure in 

human factors research. Here we describe a technique that uses machine learning to reconstruct aircraft 

maneuvers using aircraft control surface information, which is typically available in simulator output files. 

This allows researchers to more accurately estimate the moment at which a pilot initiated a maneuver. 

 

Human factors researchers often need to determine how 

different displays and procedures affect participants’ response 

times (Bradley, 1971; Hartzell, et al., 1983; Rorie & Ferne, 

2014; Santiago & Mueller, 2015). In aviation contexts, this is 

defined as the time between the onset of a stimulus (e.g., a 

traffic warning), and the moment that a pilot initiates a 

maneuver in response to the stimulus. When a simulation 

platform does not record the state of control inputs (which is 

the case for some high-fidelity training simulators), it is 

difficult to identify the maneuver onset, or moment that the 

pilot initiated a maneuver. The technique described in this 

document used the output from two Unmanned Aircraft 

System (UAS) simulator platforms that controlled different 

aircraft: The Common Open-mission Management Command 

and Control (ICOMC2) station controlling a Boeing Insitu 

RQ-21 Blackjack and a General Atomics Predator ground 

control station (GCS) controlling a MQ-9 Reaper (Williams, 

Caddigan, & Zingale, 2017). 

When control input data are unavailable, maneuvers can 

be inferred using aircraft position information. For example, a 

researcher can estimate instantaneous change in altitude by 

calculating the ratio of the difference between adjacent 

altitude samples to the sample period. Sometimes thresholds 

can be specified a priori, e.g., a change in altitude of -500 ft/s 

could be labeled as descent. However, natural variance in 

position makes this approach unreliable; depending on how 

thresholds are defined and applied, time points will either 

alternate between maneuvers when the rate of change is close 

to the threshold, or the procedure will leave many time points 

unlabeled. Additionally, there will necessarily be a lag 

between the moment that the maneuver is initiated and the 

time at which the aircraft’s position change is detectable. This 

document will discuss methods to best manage these 

challenges. 

The method described below takes advantage of two 

facts: 1) that there is a consistent mapping between an 

aircraft’s maneuvers and its control surfaces, and, 2) that these 

control surfaces change more quickly than the aircraft’s 

position in response to pilot input. For example, in a 

conventional fixed wing aircraft, a pilot initiates a turn by 

deflecting the yoke. This will result in a nearly instantaneous 

change in aileron position which will induce a roll that will 

lead to a banking turn (Federal Aviation Administration, 

2007). Response time would ideally be evaluated using the 

moment that the yoke was deflected. When this information is 

unavailable in a simulator, changes in simulated aileron 

position are a timelier indicator of the onset of a maneuver 

than changes in heading. 

The method described in this paper applies thresholds to 

changes in simulated aircraft position to identify time points 

that can be associated with specific maneuvers with a high 

level of confidence. Control surface, engine power, and 

maneuver information from these time points were used to 

train classifiers that learned the mapping of control surfaces 

and engine power to maneuvers. These classifiers were then 

used to estimate the maneuver for each of the remaining time 

points, allowing for earlier identification of maneuver onsets.  

 

PRACTICE INNOVATION 

 

Changes in Aircraft Position 

 

Simulator data were collected for a study on minimum 

information requirements for detect and avoid displays for 

unmanned aircraft pilots (Williams, Caddigan, & Zingale, 

2017). Sixteen pilots used the Predator GCS to control a 

simulated MQ-9 Reaper, which has a wingspan of 20 m and a 

cruise speed of 169 kn. An additional sixteen pilots used 

ICOMC2 to control an RQ-21 Blackjack, which has a 

wingspan of 4.9 m and a cruise speed of 55 kn. Data were 

gathered in 1156 runs (613 on the Predator GCS and 543 on 

ICOMC2), testing different display configurations and 

encounter geometries, and had an average duration of 221 s (± 

39 s). 

One approach to recover maneuver data from a simulation 

is to use aircraft position information: i.e., altitude, heading, 

and airspeed. We estimated rates of change in heading, 

altitude (MSL), and true airspeed by multiplying the 

difference between adjacent samples by the sampling rate (5 

Hz for both simulators). Heading information was unavailable 

for the ICOMC2 but was estimated by calculating the bearing 

between successive samples of latitude/longitude coordinates. 

The histograms of these difference values were inspected 

to identify peaks which we associated with periods of change 

and non-change. Thresholds were chosen to exclude 

ambiguous time points. To mitigate noise, we used lagged 

differences; short lag values produced noisy estimates, but 

long lag values removed important points. Therefore, lags and 

thresholds were chosen for each maneuver using visual 
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inspection of the difference histograms for each aircraft 

position value (see Figure 1).  

 

Figure 1: Distribution of lagged position changes for the 

Predator (top row) and ICOMC2 (bottom row). The vertical 

lines indicate thresholds, which categorize position samples as 

changing (positive or negative), unchanging, or ambiguous. 

 

Time points were labeled with a specific maneuver using 

thresholds applied to changes in heading, altitude, and 

airspeed. The labels we created included all combinations of 

heading change (left turn, right turn, and straight flight), and 

altitude change (climb, descend, and level flight). In addition 

to these nine maneuvers, airspeed changes (i.e., acceleration 

and deceleration) were considered during straight and level 

flight, for a total of eleven possible maneuver labels. The 

maneuvers were not equally prevalent; straight and level flight 

was the most common label (4.5 epochs per run), while 

airspeed maneuvers were rare (1.2 decelerating and 1.1 

accelerating epochs per run).  

 

Classifying Maneuvers Using Control Surfaces 

 

We used random forest classifiers to learn the mapping 

between simulated control surface and engine power data and 

maneuver labels (Liaw & Wiener, 2002). The classifiers were 

trained using features corresponding to aircraft control 

surfaces and engine power (10 features for ICOMC2, 80 

features for Predator). Random forest classifiers use an 

ensemble of simple decision trees; each tree is built using 

randomly selected subsets of the available features and 

training data to avoid overfitting (Ho, 1995). Random forests 

are well suited to problems with many classes, since each class 

can correspond to one or more leaves. The number of trees 

used, B, was treated as a free parameter. We estimated the 

optimal value of B for each simulator using cross validation, 

testing the values {50, 100, 150, …, 300} to ensure that 

asymptotic cross validation error would be observed.  

For each simulator, the runs were randomly split into a 

training set and a validation set, with 20% of the runs set aside 

for validation (109 runs for the ICOMC2 and 123 runs for the 

Predator). The remaining runs were randomly assigned to 8 

folds (approximately 54 runs per fold for the ICOMC2, and 61 

runs per fold for the Predator). The number of folds was 

chosen to allow for efficient parallel computation of cross 

validation accuracy on a standard computer workstation. For 

each value of B that was considered, a classifier was trained 

on the training data from all but one fold, and classifier 

performance was evaluated by calculating classifier accuracy 

on the remaining fold. This procedure was repeated for each 

fold, and accuracies were averaged to estimate classifier 

performance for that parameter value. Both simulators 

performed best with B = 150, with a mean cross validation 

error of 3% for the ICOMC2 and 4% for the Predator. Even 

with this level of performance, cross validation error was 

higher than training accuracy (1% for both simulators), which 

suggests that additional training data would lead to improved 

performance. 

With the value of B selected, final classifiers were created 

for each simulator by training on all of the runs in the 

respective training sets. These classifiers provided maneuver 

labels for every sample that was left unlabeled after applying 

the thresholds to changes in aircraft position, which 

represented 25% of the samples. We used the aircraft position 

data to identify the sequence of maneuvers in the simulator 

data, but extended the duration of each maneuver to include all 

samples adjacent to the maneuver for which the classifier 

provided the same maneuver label. After extending the 

maneuver durations in this manner, the remaining unlabeled 

samples accounted for only 8% of the total. 

 

FINDINGS 

 

Classifier performance on the validation data remained 

good, with an error of 3% for the ICOMC2 and 4% for the 

Predator. This suggests that the classification accuracy 

observed during parameter selection did not rely on 

overfitting. 

The primary goal of this technique is to identify the onset 

of aircraft maneuvers earlier than is possible by using changes 

in aircraft position alone. To determine this technique’s 

effectiveness, we measured the average difference in onset 

times across the maneuvers in each run of a simulator. Note 

that our method for labeling maneuvers ensured that onset 

times recovered using classifiers trained on control surface 

and engine power data would never be later than those 

recovered using aircraft position alone. The results of this 

comparison are shown in Figure 2; the mean time difference 

across ICOMC2 runs was 1.53 s (t(542) = 42.98, p < 0.0001 

[1.46, 1.60]), and across Predator runs was 2.38 s (t(612) = 

49.24, p < 0.0001 [2.29, 2.48]). 

 

DISCUSSION 

This procedure used a machine learning method that had 

been trained on aircraft control surface and engine power data 

to reliably recover the onset of maneuvers in simulators. 

Maneuver onsets are identified over 1 s earlier compared to 

maneuver identification performed by applying thresholds to 

changes in aircraft position. This is a significant difference in 

the context of response times, where “large” differences might 

be on the order of hundreds of milliseconds (Donders, 1869).  

A limitation to the current approach is that ground truth 

information for pilot intentions was unavailable; maneuvers 

were inferred from rates of change of simulated aircraft 
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position. Future work should investigate whether classifier 

performance is improved when ground truth maneuver 

information is available for training. For example, researchers 

could generate a set of training data by asking pilots to execute 

a specific sequence of maneuvers at predetermined times. This 

approach would also provide ground truth maneuver onset 

times against which classification-based onset times could be 

compared; the current approach assumes that the true time of 

maneuver onset is unavailable.  

Figure 2: The distribution of mean start time differences 

across runs for the two simulator platforms. Maneuver start 

times were identified earlier using classifier results. 

 

PRACTITIONER TAKE-AWAYS 

 

•   Human factors researchers use the onset of a maneuver to 

measure response time. 

•   High-fidelity training simulators may not record control 

inputs, which provide the best measure of pilots’ 

maneuver decisions. 

•   Changes to an aircraft’s control surfaces are better proxy 

for the onset of a maneuver than changes to aircraft 

position (e.g., heading, altitude). 

•   Machine learning methods can recover the mapping 

between control surfaces and aircraft maneuvers. 

•   This technique identifies the onset of maneuvers earlier 

than applying thresholds to changes in aircraft position 

alone. 
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